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The parallel dynamics of extremely diluted symmetric Q-Ising neural networks
is studied for arbitrary Q using a probabilistic approach. In spite of the
extremely diluted architecture the feedback correlations arising from the sym-
metry prevent a closed-form solution in contrast with the extremely diluted
asymmetric model. A recursive scheme is found determining the complete time
evolution of the order parameters taking into account all feedback. It is based
upon the evolution of the distribution of the local field, as in the fully connected
model. As an illustrative example an explicit analysis is carried out for the Q=2
and Q=3 model. These results agree with and extend the partial results existing
for Q=2. For Q>2 the analysis is entirely new. Finally, equilibrium fixed-point
equations are derived and a capacity-gain function diagram is obtained.

KEY WORDS: Extremely diluted symmetric networks; Q-Ising neurons;
parallel dynamics; probabilistic approach.

1. INTRODUCTION

For the parallel dynamics of extremely diluted asymmetric and layered
feedforward Q�2-Ising neural networks recursion relations for the rele-
vant order parameters have been obtained in closed form (cfr. refs. 1�4 and
the references cited therein). This has been possible because in these types
of networks one knows that there are no feedback correlations as time
progresses.
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For the parallel dynamics of networks with symmetric connections,
however, things are quite different. Even for extremely diluted versions of
these systems it is known that feedback correlations become essential from
the second time step onwards, complicating the dynamics in a nontrivial
way. As a consequence explicit results concerning the time evolution of the
retrieval overlap for these symmetrically diluted models have been obtained
for the Q=2 case up to the third time step only.(5, 6) Furthermore, the local
instability of neighbouring trajectories has been examined, recently, invok-
ing the ansatz that the second step formula for the retrieval overlap stays
valid for all times t�2.(7) So, up to now, no systematic analytic procedure
is available, even for Q=2, for calculating the complete time evolution
taking into account all feedback correlations. The main purposes of this
paper are to fill this gap and extend the results to general Q.

The method used is a probabilistic signal-to-noise analysis(8, 9) but
starting from the distribution of the local field instead of working directly
with the order parameters. Recently, a complete solution for the parallel
dynamics of fully connected Q-Ising networks at zero-temperature has
been obtained in this way.(10) Similar to the fully connected architecture,
and in contrast with the extremely diluted asymmetric and layered
network architectures, the local field contains both a discrete and a nor-
mally distributed part. The difference with the fully connected model is
that the discrete part at a certain time t does not involve the spins at all
previous times t&1, t&2,... up to 0 but only the spins at time step t&1.
But, again this discrete part prevents a closed-form solution of the
dynamics. Nevertheless, we succeed in developing a recursive scheme in
order to calculate the complete time evolution of the order parameters��
the retrieval overlap and the activity��taking into account all feedback
correlations. In this way we have completed our discussion of the parallel
dynamics at zero temperature for the different architectures��asymmetric
and symmetric extremely diluted, layered feedforward and fully connected
��considered in the literature.

As an illustration we write out these expressions in detail for the first
five time steps of the dynamics. For Q=2 our results agree with the first
three time steps available in the literature (5, 6) and extend these by a
systematic analytic procedure. Furthermore we find that the ansatz put
forward in ref. 7 strongly overestimates the retrieval overlap. For Q�3 our
results are new and do give a clear picture of the evolution of the network
in the retrieval regime.

Finally, by requiring the local field to become time-independent imply-
ing that some correlations between its Gaussian and discrete noise parts
are neglected we can obtain fixed-point equations for the order param-
eters. For Q=2 they coincide with those derived via thermodynamical
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methods.(11) For Q�3 we obtain for the first time the structure of the
capacity-gain parameter diagram.

The rest of the paper is organized as follows. In Section 2 we introduce
the model, its dynamics and the Hamming distance as a macroscopic
measure for the retrieval quality. In Section 3 and Appendix 1 we use the
probabilistic approach in order to derive a recursive scheme for the evolu-
tion of the distribution of the local field, leading to recursion relations for
the order parameters. The differences with other architectures are outlined.
Using this scheme, we explicitly calculate in Appendix 2 the order
parameters for the first five time steps of the dynamics. In Section 4 we dis-
cuss the evolution of the system to fixed-point attractors. For Q=2, 3 a
detailed discussion of the theoretical results obtained in Section 3 is presented
in Section 5. Some concluding remarks are given in Section 6.

2. THE MODEL

Consider a neural network 4 consisting of N neurons which can take
values _i from a discrete set S=[&1=s1<s2< } } } <sQ=+1]. The
p patterns to be stored in this network are supposed to be a collection
of independent and identically distributed random variables (i.i.d.r.v.),
[! +

i # S], + # P=[1,..., p] and i # 4, with zero mean, E[! +
i ]=0, and

variance A=Var[! +
i ]. The latter is a measure for the activity of the

patterns. Given the configuration _4(t)#[_j (t)], j # 4=[1,..., N ], the
local field in neuron i equals

hi (_4"[i ](t))= :
j # 4"[i ]

Jij _ j (t) (1)

with Jij the synaptic couplings between neurons i and j. In the sequel we
write the shorthand notation h4, i (t)#hi (_4"[i ](t)).

The network is taken to be extremely diluted but symmetric meaning
that the couplings are chosen as follows. Let [cij=0, 1], i, j # 4 be i.i.d.r.v.
with distribution Pr[cij=x]=(1&C�N ) $x, 0+(C�N ) $x, 1 and satisfying
cij=cji , cii=0, then

Jij=
cij

CA
:

+ # P

! +
i ! +

j for i{j (2)

Compared with the asymmetrically diluted model(12) the architecture is still
a local Cayley-tree but no longer directed and in the limit N � � the prob-
ability that the number of connections Ti=[ j # 4 | cij=1] giving informa-
tion to the site i # 4 is still a Poisson distribution with mean C=E[|Ti |].
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Thereby it is assumed that C<<log N and in order to get an infinite
average connectivity allowing to store infinitely many patterns p one also
takes the limit C � � and defines the capacity : by p=:C. However,
although for the asymmetric architecture, at any given time step t all spins
are uncorrelated and hence no feedback is present, for the symmetric
architecture this is no longer the case, causing a feedback from t�2
onwards.(6) This feedback complicates the dynamics.

The following dynamics is considered. The configuration _4(t=0) is
chosen as input. At zero temperature all neurons are updated in parallel
according to

_i (t) � _i (t+1)=gb(h4, i (t))

gb(x) # :
Q

k=1

sk[%[b(sk+1+sk)&x]&%[b(sk+sk&1)&x]] (3)

with s0#&� and sQ+1#+� and where b>0 is the gain parameter of
the system. The average slope of the gain function gb( } ) is controlled by b.

To measure the retrieval quality of the system one can use the Hamming
distance between a stored pattern and the microscopic state of the network

d(! +, _4(t))#
1
N

:
i # 4

[! +
i &_ i (t)]2 (4)

This introduces the main overlap and the arithmetic mean of the neuron
activities

m +
4(t)=

1
NA

:
i # 4

! +
i _i (t), + # P, a4(t)=

1
N

:
i # 4

[_i (t)]2 (5)

We recall that in the thermodynamic limit C, N � � all averages will have
to be taken over the treelike structure, viz. (1�N ) �i # 4 � (1�C ) �i # Tj

. We
remark that for Q=2 the variance of the patterns A=1, and the neuron
activity a4(t)=1.

3. RECURSIVE DYNAMICAL SCHEME

In an extremely diluted network the symmetric couplings cause non-
trivial correlations, even at zero temperature, which become increasingly
tedious to evaluate.(5, 6) So, results on the dynamics for these symmetric
systems existing up to now concern Q=2 only and are restricted to the
first three time steps.
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Using a probabilistic approach (see, e.g., refs. 4, 8, and 9) we calculate
the distribution of the local field for a general time step for Q�2 systems
analogously to the fully connected case studied very recently.(10) This
allows us to obtain recursion relations determining the full time evolution
of the relevant order parameters.

Suppose that the initial configuration of the network [_i (0)], i # 4, is
a collection of i.i.d.r.v. with mean E[_ i (0)]=0, variance Var[_i (0)]=a0 ,
and correlated with only one stored pattern, say the first one [!1

i ]:

E[! +
i _j (0)]=$i, j $+, 1m1

0 A m1
0>0 (6)

This implies that by the law of large numbers (LLN) one gets for the main
overlap and the activity at t=0

m1(0)# lim
C, N � �

m1
4(0) =Pr 1

A
E[!1

i _i (0)]=m1
0 (7)

a(0)# lim
C, N � �

a4(0) =Pr E[_2
i (0)]=a0 (8)

where the convergence is in probability.(13) Writing the local field at t=0
as

hi (0)= lim
C, N � � _!1

i m1
Ti

(0)+
1

CA
:

+ # P"[1]

:
j # Ti

! +
i ! +

j _j (0)& (9)

where we recall that Tj is the part of the tree connected to neuron j, we find
using standard signal-to-noise techniques (see, e.g., refs. 6 and 12)

hi (0) =D !1
i m1(0)+N(0, :a0) (10)

where the convergence is in distribution.(13) The quantity N(0, V )
represents a Gaussian random variable with mean 0 and variance V. At
this point we note that this structure of the distribution of the local field
at time zero��signal plus Gaussian noise��is typical for all architectures
treated in the literature.

The key question is then how these quantities evolve in time under the
parallel dynamics specified before. For a general time step we find from
Eq. (3) and the LLN in the limit C, N � � for the main overlap and the
activity (5)

m1(t+1) =Pr 1
A

((!1
i gb(hi (t)))) , a(t+1) =Pr ((g2

b(hi (t)))) (11)
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with hi (t)#limC, N � � h4, i (t). In the above (( } )) denotes the average both
over the distribution of the [! +

i ] and the [_ i (0)]. The average over the latter
is hidden in an average over the local field through the updating rule (3).

From the work on fully connected networks(10) we know that due to the
correlations we have to study carefully the influence of the non-condensed
patterns in the time evolution of the system, expressed by the variance of
the residual overlaps. The latter is defined as

r +(t)# lim
C, N � �

r +
Ti

(t)= lim
C, N � �

1

A - C
:

j # Ti

! +
j _j (t) + # P"[1] (12)

The aim of this section is then to calculate the distribution of the local
field and the order parameters as a function of time for arbitrary Q.

We start by rewriting the local field (1) at time t in the following way

h4, i (t)=!1
i m1

Ti
(t)+

1

- C
:

+ # P"[1]

! +
i r +

Ti
(t) (13)

Since the neurons [_j (t) | j # Ti ] are not i.i.d.r.v. the central limit
theorem (CLT) can not be applied directly to the residual overlap r +

Ti
(t).

Therefore we follow a procedure similar to that used for the fully connected
model(10) by taking out of the local field precisely the contributions arising
from these dependences.

In this way we obtain in the limit C, N � � (for more details see
Appendix 1)

hi (t+1)=!1
i m1(t+1)+:/(t) _ i (t)+N(0, :a(t+1)) (14)

with

/(t)= :
Q&1

k=1

(sk+1&sk) fhi (t)(b(sk+1+sk)) (15)

fhi (t)( y)=| `
[t�2]

s=0

dxt&2s $( y&!1
i m1(t)&:/(t) _i (t)&- :a(t) xt)

_
1

- det(2?w)
exp \&

1
2

xw&1xT+ (16)

with x=([xs])=(xt&2[t�2] ,...xt&2 , xt) a set of correlated normally dis-
tributed variables, which we choose to be normalized. The brackets [t�2]
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denote the integer part of t�2 and the the correlation matrix w#(\(s, s$))=
(E[xsxs$]).

So the local field at time t consists out of a signal term, a discrete noise
part and a normally distributed noise part. Furthermore, the discrete noise
and the normally distributed noise are correlated and this prohibits us to
derive a closed expression for the overlap and activity. But, Eq. (11)
together with Eqs. (13)�(16) form a recursive scheme in order to obtain the
order parameters of the system.

As an illustration we write down in Appendix 2 the evolution equa-
tions for the order parameters of a general Q�2-Ising network for the first
five time steps, taking into account all correlations. Five time steps suffice
to give an accurate picture of the dynamics in the retrieval regime of the
network. In the literature only the first three time steps of the Q=2 model
are known. Our results completely solve the parallel dynamics for any
Q�2. This also allows us to determine precisely the effects of neglecting
the correlations between the Gaussian and discrete part of the noise, i.e., an
overestimate of the main overlap.

4. FIXED-POINT EQUATIONS

A second type of results is obtained by requiring through the recursion
relations (14) that the local field becomes time-independent. This means
that some of the discrete noise part is neglected. We show that for Q=2
this procedure leads to the same fixed-point equations as those found from
a thermodynamic replica symmetric mean-field theory approach in ref. 11.
For Q>2 these fixed-point equations are new since no replica results are
available in the literature.

In the extremely diluted and layered Q-Ising models the evolution
equations for the order parameters do not change their form as time
progresses, such that the fixed-point equations are obtained immediately by
leaving out the time dependence (see refs. 2 and 4). This still allows small
fluctuations in the configurations [_i ]. Similar to the fully connected
model the form of the evolution equations for the order parameters in the
symmetrically diluted model treated here does change by the explicit
appearance of the [_i (t)] term, such that we can not use that procedure
to obtain the fixed-point equations. Instead we require that the distribution
of the local field given by (14) becomes independent of time. This is an
approximation because fluctuations in the network configuration are no
longer allowed. It implies that m and a in the fixed-point are found from
the definitions (5), and not from leaving out the time dependence in the
recursions relation (11).
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So, eliminating the time-dependence in the evolution equations for the
local field (14) one obtains

hi=!1
i m1+N(0, :a)+:/_i (17)

with hi#limt � � hi (t). Employing this expression in the updating rule (3)
one finds

_i=gb(h� i+:/_ i ) (18)

where h� i=N(!1
i m1, :a) is the normally distributed part of Eq. (17). Com-

pared with the fully connected model (see ref. 10 Eqs. (79) and (80)) one
sees that the equations here have a similar structure but simpler coefficients
in front of the noise terms, viz. the denominator 1&/ is replaced by 1.

Therefore the same method of solution as in the fully connected case,
i.e., a geometrical Maxwell construction (see also ref. 14 and 15) can be
employed, which leads to a unique solution

_i=gb� (h� i ), b� =b&
:/
2

(19)

Using the definition of the main overlap and activity (5) in the limit
C, N � �, one finds in the fixed point

m1=
1
A ��!1 | Dz gb� (!1m1+- :a z)�� (20)

a=��|Dz g2
b�
(!1m1+- :a z)�� (21)

where we recall that

/=
1

- :a ��| Dz zgb� (!1m1+- :a z)�� (22)

For the special case of Q=2 the resulting equations (20)�(22) are the
same as those derived from a thermodynamic replica-symmetric mean-field
theory treatment in ref. 11. For general Q>2 such a comparison can not
be made because a thermodynamic treatment is not yet available in the
literature. Hence it is interesting to write down these equations in more
detail here
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m=
s1+sQ

2A
((!1)) +

1
2A

:
Q&1

k=1

(sk+1&sk) ��!1 erf \!1m1&b� (sk+1+sk)

- :a +��
(23)

a=
s2

1+s2
Q

2
((!1)) +

1
2

:
Q&1

k=1

(s2
k+1&s2

k) ��erf \!1m1&b� (sk+1+sk)

- :a +��
(24)

/=
1

- 2?:a �� :
Q&1

k=1

(sk+1&sk) exp
&(!1m1&b� (sk+1+sk))2

2:a �� (25)

We are presently working out such a thermodynamic approach for these
systems at arbitrary temperature.(16)

5. NUMERICAL RESULTS

The equations derived in Section 3 and Appendix 2 have been studied
numerically for the Q=2, 3 model with equidistant states and a uniform
distribution of patterns, implying that A=1 for Q=2 and A=2�3 for
Q=3.

In the Q=2 case the temperature-capacity phase diagram given by a
thermodynamic replica-symmetric mean-field theory approach has been
presented in ref. 11. From that work we know that the critical capacity at
zero temperature equals 0.634. So we discuss the parallel dynamics using
the complete recursive scheme developed here for a typical point in the
retrieval regime, e.g., :=0.3. In Fig. 1 we show the overlap m1(t), t=1 to
5 versus the initial overlap m1

0 with the condensed pattern (thick lines).
(We forget about the superscript 1). For m0�0.4 we see that the retrieval
attractor is reached quickly. In fact four or five time steps give us already
an accurate picture of the dynamics in the retrieval region. We note that
the convergence to the attractor is of an oscillating nature, in contrast with
the asymmetrically diluted model. The first three time steps were given in
the literature before(5, 6) and they agree with our results.

In this figure we also indicate the overlap (thin lines) when making the
ansatz(7) that the formula for the second time step is valid for any time
step. This ansatz neglects some correlations and it systematically over-
estimates the overlap for all m0 . This effect becomes even stronger when
going from time step 3 to 5.

Concerning the Q=3 model, in order to determine the retrieval
regime of the network, we first have to solve the fixed-point equations
(23)�(25) derived in Section 4 since a thermodynamic phase diagram is not
available in the literature. The resulting capacity-gain diagram is presented
in Fig. 2. We discover three different regions in the retrieval regime. In
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File: 822J 238110 . By:SD . Date:20:07:99 . Time:13:24 LOP8M. V8.B. Page 01:01
Codes: 1300 Signs: 798 . Length: 44 pic 2 pts, 186 mm

Fig. 1. The overlap m(t) for Q=2 systems is presented for the first five time steps as a func-
tion of m0 for :=0.3. The results for the first, second, third, fourth and fifth time step are
indicated by a dotted, a short-dashed, a dashed-dotted, a long-dashed and a full curve respec-
tively. The results using the ansatz of ref. 7 for the third, fourth and fifth time step are
indicated with thin lines.

Fig. 2. The :&b phase diagram for Q=3. The full curve and long-dashed curve indicate the
boundary of the retrieval region. The dashed-dotted curve denotes the boundary between the
Ising-like region I and the other regions. The short-dashed curve represents the boundary
between regions II and III. The points 1 to 4 indicate the network parameters used in the
discussion of the dynamics.
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File: 822J 238111 . By:SD . Date:20:07:99 . Time:13:24 LOP8M. V8.B. Page 01:01
Codes: 1364 Signs: 954 . Length: 44 pic 2 pts, 186 mm

region I (bounded by the straight full line and the dashed-dotted line) the
activity a is of order 1, and b� �0. Consequently we call it the Ising-like
region. In region II and III, a is of order A (and b� >0). The difference
between II and III, separated by a short-dashed line, is that there is no
sustained activity state (m=0, a{0) present in the latter. The zero solu-
tion is always a fixed-point. We remark that the boundary of the retrieval
region is denoted by a full line when the transition (to the spin-glass phase)
is continuous and by a broken line when it is first-order. For further
details, which are not relevant to our present discussion we refer to ref. 16.

Fig. 3. The overlap m(t), the activity a(t) and the Hamming distance d(t) are presented for
the first five time steps as a function of m0 for the network parameters b=0.1, :=0.5,
a0=0.83. The curves for the different time steps are as in Fig. 1
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For specific network parameters corresponding to some arbitrarily
chosen points in the retrieval phase in this equilibrium phase diagram,
indicated as 1 to 4, we have studied the dynamics governed by the evolu-
tion equations found here. Figures 3�5 present an overview of these results
by plotting the overlap m(t), the activity a(t) and the Hamming distance
d(t) versus the initial overlap m0 with the condensed pattern. The initial
activity is taken to be a0=0.83.

Fig. 4. As in Fig. 3, for the network parameters b=0.5, :=0.3, a0=0.83.
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Codes: 957 Signs: 574 . Length: 44 pic 2 pts, 186 mm

In the Ising-like region I, the network parameters corresponding to
point 1 are :=0.5, b=0.1. We see in Fig. 3 that d(t) reaches its plateau
value indicating retrieval for m0>0.6. The corresponding value of the main
overlap is about 0.83 and the activity goes to values larger than A=2�3.
So, the network configuration is no longer uniformly distributed: the state
_i=0 has a smaller probability to appear than the states _i=\1. Hence
d(t) can never be that small.

Fig. 5. As in Fig. 3, for the network parameters b=0.6, :=0.1, a0=0.83.
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A somewhat similar type of behavior is found in the fully connected
model in the region where the order parameter giving the mean-square ran-
dom overlap with the non-condensed patterns is of order 10.(10)

For a network corresponding to point 2 in region II of the phase
diagram with :=0.3, b=0.5 we see in Fig. 4 that for m0>0.5 the dynamics
evolves to the retrieval attractor with main overlap m=0.84. For these
values of m0 , d(t) quickly goes to its plateau value (smaller than the one
of point 1). The activity then attains a value near A meaning that the
network configuration is uniformly distributed. We remark that the bound-
ary between the retrieval attractor and the zero attractor becomes clearly
visible, especially in the behavior of m(t) and a(t). In this region we have
also considered the point labeled as 3, i.e., :=0.6, b=0.5. There the
behavior of the dynamics is very similar to point 1, and hence we have not
drawn a corresponding figure, except for the fact that a(t) goes to a value
near A (as for point 2) indicating again a uniformly distributed network
configuration.

In region III of the phase diagram for the network parameters corre-
sponding to point 4 with :=0.1, b=0.6, we need a greater value of m0 to
reach the retrieval attractor. As seen in Fig. 5, m0 has to be at least 0.65.
But the value of m(t) is larger, m=0.93, and d(t) is smaller than for the
other network parameters. Furthermore, the boundary between the
retrieval attractor and the zero-attractor is sharply determined.

6. CONCLUDING REMARKS

An evolution equation is derived for the distribution of the local field
governing the parallel dynamics at zero temperature of extremely diluted
symmetric Q�2-Ising networks. For the first time, all feedback correla-
tions are taken into account. In contrast with extremely diluted asymmetric
and layered networks and in analogy with fully connected models this dis-
tribution is no longer normally distributed but contains a discrete part.

Employing this evolution equation a general recursive scheme is
developed allowing one to calculate the relevant order parameters of the
system, i.e., the main overlap and the activity for any time step. This
scheme has been worked out explicitly for the first five time steps of the
dynamics.

Under the condition that the local field becomes time-independent,
meaning that some of the discrete noise is neglected, fixed-point equations
are obtained for the order parameters. For Q>2 these equations are not
in the literature. Hence, we have shortly discussed the capacity-gain
diagram for the Q=3 model.
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As an illustration a detailed discussion of the dynamics is given for the
Q=2 and Q=3 model. It is seen from these numerical results that the first
four or five time steps do give a clear picture of the time evolution in the
retrieval regime. For Q=2 the ansatz that the structure of the formula for
the second time step is valid for all t�2, neglecting any further correlations
between the Gaussian and discrete part of the noise, strongly overestimates
the retrieval overlap.

APPENDIX 1: DISTRIBUTION OF THE LOCAL FIELD

We recall Eq. (13) for the local field and concentrate on the residual
overlap r +

Ti
(t), + # P"[1]. Analogously to the fully connected model, (10) we

splitt off the contributions arising from the dependence of the neurons
[_j (t) | j # Ti ].

In order to do so we apply the dynamics writing the residual overlap
(12) as

r +
Ti

(t+1)=
1

A - C
:

j # Ti

! +
j gb \!1

j m1
Tj

(t)+
1

- C
:

& # P"[1]

!&
j r&

Tj
(t)+ (26)

We expect contributions coming from the fact that the _j (t+1) are
dependent on the _i (t) for all j # Ti and that the _j (t+1) and ! +

j are
dependent (the latter is microscopic but leads, at least for a fully connected
architecture, to a macroscopic contribution in the thermodynamic limit).
Therefore, we define a modified local field

h� +
4, j (t)=!1

j m1
Tj

(t)+
1

- C
:

& # P"[1, +]

!&
j r&

Tj
(t) (27)

Expanding gb( } ) in (26) around h� +
4, j (t) we arrive at

r +
Ti

(t+1)=
1

A - C
:

j # Ti

!+
j gb(h� +

4, j(t))

+
1

A - C
:

Q&1

k=1

:
j # Ti

! +
j 3 _} 1

- C
! +

j r +
Tj

(t) }&|b(sk+sk+1)&h� +
4, j(t)|&

_
sk+1&sk

2 _sign(b(sk+sk+1)&h� +
4, j(t))+sign \ 1

- C
! +

j r +
Tj

(t)+&
(28)

with 3 the Heaviside function.
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We then consider the limit C, N � �. In this limit the density distribu-
tion of the modified local field h� +

i (t) at time t equals the density distribu-
tion of the local field hi (t) itself. Hence, applying the CLT to the first term
of (28) gives, recalling Eqs. (11) and (27)

r~ +(t)# lim
C, N � �

1

A - C
:

j # Ti

! +
j gb(h� +

4, j (t)) =D N(0, a(t+1)�A) (29)

because of the weak dependence of h� +
j (t) and ! +

j . To the second term of
(28) we apply the LLN arriving at a contribution given by the average of

1

2 - C
f $hj (t)(b(sk+1+sk)) ! +

j |! +
j |2 (r +

Tj
(t))2+/(t) |! +

j |2 r +
Tj

(t) (30)

over [! +
j ], [_j (0)] and where /(t) is given by Eq. (15). Here fhi (t) is the

probability density of the local field hi (t) and f $hi (t) denotes its derivative
w.r.t. the argument. Since the residual overlap r +

Tj
(t) depends explicitly

on j, it is also averaged over, while in the fully connected case the residual
overlap r +

4(t) is kept fixed. Doing these averages none of these terms
contribute to r +(t+1) as expressed by (28).

This implies that r +(t+1) is Gaussian with variance a(t+1)�A, in
contrast with both the fully connected(10) and the layered architecture, (4)

where the variance contains extra terms. This finishes the treatment of the
residual overlap.

Subtleties arise in the treatment of the local field at time t+1. We
have to take into account the correlations between ! +

i and r +
Ti

. Starting
from the form (13) and using Eqs. (28)�(30) we find that the second part
of (30) leads to a contribution from the site i given by :/(t) _i (t). This is
different from the asymmetrically diluted case, where the probability to find
the site i in r +

Tj
is zero such that we do not get any contribution at all.

Furthermore, for the fully connected case, where all sites of the residual
overlap in the second part of (30) are relevant, the latter leads to an extra
contribution /(t) hi (t) in the local field hi (t+1).

So we obtain in the limit C, N � � Eq. (14) where the discrete noise
and the normally distributed noise are correlated. These correlations, which
become more complicated as time evolves, will determine the distribution
of the local field, fhi (t) in Eq. (15). Using the evolution equation _ i (t) can
be replaced by gb(hi (t & 1)) such that the discrete noise part is a stepfunc-
tion of correlated variables. These are correlated through the dynamics
with the normally distributed part of hi (t). Therefore the local field itself
can be considered as a transformation of a set of correlated normally dis-
tributed variables leading to the expression (16).
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APPENDIX 2: THE FIRST FEW TIME STEPS

A1. First Step Dynamics

The order parameters for the first time step can be written down
immediately using Eqs. (9) and (11)

m1(1)=
1
A ��!1 | Dz gb(!1m1(0)+- :a(0) z)�� (31)

a(1)=��| Dz g2
b(!1m1(0)+- :a(0) z)�� (32)

where (( } } } )) now indicates the average taken with respect to the distribu-
tion of the first pattern and the initial configuration and Dz denotes a
Gaussian measure Dz=dz exp(&1

2z2)�- 2? .

A2. Second Step Dynamics

First we need the distribution of the local field at time t=1 which can
be read off from Eq. (16)

hi (1)=!1
i m1(1)+:/(0) _i (0)+N(0, :a(1)) (33)

with (see Eq. (15))

/(0)=�� 1

- :a(0) | Dz zgb(!1m1(0)+- :a(0) z)�� (34)

Recalling again Eq. (11), the main overlap reads

m1(2)=
1
A ��!1 | Dz gb(!1m1(1)+:/(0) _(0)+- :a(1) z)�� (35)

The activity is given by a similar equation obtained by forgetting about the
factor 1�A and the !1 in between the double brackets and replacing gb( } )
by g2

b( } ) (compare Eq. (32)).

A3. Third Step Dynamics

We start again by writing down the distribution of the local field at
time t=2.

hi (2)=!1
i m1(2)+:/(1) _i (1)+N(0, :a(2)) (36)
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where (Eqs. (15), (16))

/(1)=
1

- :a(1) ��| Dz zgb(!1m1(1)+:/(0) _(0)+- :a(1) z)�� (37)

This gives for the main overlap

m1(3)=
1
A ��!1gb(!1m1(2)+:/(1) _(1)+- :a(2) y)�� (38)

with y the Gaussian random variable N(0, 1). The average has to be taken
over !1, y, _i (0) and _i (1). The average over !1 and _i (0) causes no dif-
ficulties because this initial configuration is chosen randomly. The average
over y, the Gaussian random variable appearing in hi (2), and _i (1) is more
tricky because hi (2) and _i (1) are correlated by the dynamics. However,
the evolution equation (3) tells us that _i (1) can be replaced by gb(hi (0))
and, hence, the average can be taken over hi (0) instead of _i (1).

From the recursion relation (14) one finds for the correlation coef-
ficient between hi (0) and h i (2)

\(2, 0)=
1

- a(0) a(2) ��_(0) | Dz gb(!1m1(1)+:/(0) _(0)+- :a(1) z)��
(39)

Using all this the main overlap at the third time step (38) becomes

m1(3)=
1
A ��!1 | Dw2, 0(x, y)

_gb(!1m1(2)+:/(1)[gb(!1m1(0)+- :a(0) x)]+- :a(2) y)��
(40)

where the joint distribution of x and y equals

Dw2, 0(x, y)=
dx dy

2? - 1&\(2, 0)2
exp \&

x2&2\(2, 0) xy+ y2

2(1&\(2, 0)2) + (41)

In an analogous way one arrives at the expression for the activity at the
third time step. From these results, in particular the absence of the _i (0)-
term in (36) we see that feedback loops over two time steps exist, but the
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probability to have loops over a longer time period equals zero. If the dilu-
tion is asymmetric, (2) even all feedback disappears and the local field is
simply Gaussian distributed. For the special case of Q=2 these results
agree with the results available for the first three time steps in the
literature.(5, 6)

A4. Fourth Step Dynamics

Again, from Eqs. (15)�(16) we find

hi (3)=!1
i m1(3)+:/(2) _i (2)+N(0, :a(3)) (42)

with

/(2)=�� 1

- :a(2)(1&\(2, 0)2) | Dz z | Dy

_gb(!1m(2)+:/(1) gb(!1m(0)+- :a(0) y)

+- :a(2)(1&\(2, 0)2) z+- :a(2) \(2, 0) y)�� (43)

This leads to the main overlap for the fourth time step

m1(4)=
1
A ��!1gb(!1m1(3)+:/(2) _(2)+- :a(3) y)�� (44)

with y the Gaussian random variables N(0, 1). The average has to be
taken over !1, y, _ i (0), and _i (2) or recalling the evolution equation (3)
over !1, y, _i (0) and hi (1). The distribution function of these variables, i.e.,
Dw3, 1(x, y) is given by Eq. (41) with the index 2 replaced by 3 and 0 by 1.
The correlation coefficients between the fields at different time steps can
again be calculated from the recursion relation (14)

\(3, 1)=
1

- a(1) a(3) ��| Dw2, 0(x, y) gb(!1m1(0)+- :a(0) x)

_gb(!1m1(2)+:/(1) gb(!1m1(0)+- :a(0) x)+- :a(2) y)��
(45)
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Using all this Eq. (44) becomes

m1(4)=
1
A ��!1 | Dw3, 1(x, y) gb(!1m1(3)+:/(2)

_gb(!1m1(1)+:/(0) _(0)+- :a(1) x)+- :a(3) y)�� (46)

In an analogous way the activity at the fourth time step can be calculated.
In comparison with the fully connected model we remark that only two
correlated Gaussians are present here and the term in /(1) is absent.

For Q=2 the following simplifications are possible: b(sk+1+sk)=0,
(sk+1&sk)=2, gb( } )=sign( } ) and a(t)=A=1. Furthermore, the ansatz
used in ref. 7 for the study of neighbouring trajectories amounts to neglect-
ing the correlations between the Gaussian and discrete part of the noise.
The result of this approximation is to take all correlation coefficients
\(t, t&2)=0 (such that, e.g., the matrix w3, 1 in the formula (46) for Q=2
becomes the unit matrix).

A5. Fifth Step Dynamics

The local field hi (4) reads

hi (4)=!1
i m1(4)+:/(3) _i (3)+N(0, :a(4)) (47)

The expression for /(3) has an analogous form as the one for /(2) since the
structure of hi (3), needed to calculate it, is similar as the one of hi (2)

/(3)=�� 1

- :a(3)(1&\(3, 1)2) | Dz z | Dy

_gb(!1m(3)+:/(2) gb(!1m(1)+:/(0) _(0)+- :a(1) y)

+- :a(3)(1&\(3, 1)2) z+- :a(3) \(3, 1) y)�� (48)

The overlap at time step five is then given by

m1(5)=
1
A ��!1gb(!1m1(4)+:/(3) _(3)+- :a(4) z)�� (49)

with z the Gaussian random variables N(0, 1). The average has to be
taken over !1, z, _i (0), and _ i (3). Rewriting the network configuration
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[_i (3)] by means of the gain function (3) the local fields at time steps 0, 2
and 4 appear. The distribution function of these three local fields equals

x
Dw4, 2, 0(x, y, z)=

dx dy dz

(2?)3�2
- Det w4, 2, 0

exp \&
1
2

(x y z)(w4, 2, 0)&1 \ y++z

(50)

where

1 \(2, 0) \(4, 0)

w4, 2, 0=\ \(2, 0) 1 \(4, 2)+ (51)

\(4, 0) \(4, 2) 1

with the correlation coefficients \(2, 0), \(4, 0), and \(4, 2). The latter can
again be calculated using the relation (14). We do not write them out
explicitly here. Using all this Eq. (49) becomes

m1(5)=
1
A ��!1 | Dw4, 2, 0(x, y, z) gb(!1m1(4)+:/(3)

_gb(!1m1(2)+:/(1) gb(!1m1(0)+- :a(0) x)

+- :a(2) y)+- :a(4) z)�� (52)

In an analogous way the activity at the fifth time step can be calculated.
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